Mass Spectrometry

International Journal of Mass Spectrometry 219 (2002) 315-324

www.elsevier.com/locate/ijms

Some properties of charged particle trajectories in
guadrupole mass spectrometers
Part I. General theory

Ernst P. Sheretov

Department of Physics, Ryazan Sate Radio Technical University, Gagarin Sreet 59/1, 391000 Ryazan, Russia
Received 28 January 2002; accepted 29 May 2002

Abstract

A general theory of extreme characteristic solutions of the Hill equation is developed. The theory yields reliable expressiol
for calculation of amplitudes of charged particle oscillations within quadrupole mass spectrometers. It is demonstrated tt
trajectories of ions, operating points of which lie on quasi-stability lines (lines of modulation resonances), have remarkabl
features. Such ions have substantially smaller amplitudes than do those ions having operating points which do not lie
quasi-stability lines. The theory is quite general and can be applied for any rf waveform. A particular case of rectangular
voltage is illustrated by equations for amplitude-phase characteristics (APC), applicable for ions with operating points lyin
on the quasi-stability lin@ = 0. It is demonstrated that APC of the first kind exhibits a flat region with relative amplitude of
ion oscillation equal to 1. (Int J Mass Spectrom 219 (2002) 315-324)
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction in quadrupole mass spectrometg8kfor an arbitrary
set of initial conditions of ion motion and arbitrary
The current state of quadrupole mass spectrome- rf waveforms. The use of this method, for instance,
try (QMS) is characterized by a growing interest of allowed us to optimize rf voltage waveforfd] and
mass spectrometrists towards injection of externally- to achieve a new prospective waveform that we called
generated ions into a quadrupole ion trap. To achieve the EC-signal.
this aim, one needs a reliable theory that determines When we checked the accuracy of expressions
amplitudes of ions injected into an rf field of a three- obtained by the method of extreme characteristic so-
dimensional ion trap driven by a trapping rf voltage lutions, we found that the calculation error may reach
of arbitrary waveform. The theory of extreme char- 15-20% for some operating points in the stability di-
acteristic solutions of the Hill equation, sequentially agram. Such an error occurred within a narrow range
developed in our laboratorfy,2], yields simple ana-  of stability parameters (for exampla,and q values
Iytical expressions for the amplitude of ion oscillation in the Mathieu equation) and could not be accounted
for by the relatively small mean error. However, the
E-mail: sheretov@eac.ryazan.su development of ion trapping theory urged us to find
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an appropiate explanation for this effect. As a re-
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Using Eq. (3)we can show that all the ;(t) func-

sult, a more general theory of extreme characteristic tions are periodic functions of periodlp and the
solutions was developed and its basic principles are following expressions are valid for them:

explained in this paper.

2. General theory of extreme characteristic
solutions of the Hill equation

Let us consider the Hill equation in the following
form:

¥+ @@)y(r) =0 1)

where @(t) is a periodic function of periodyp. Ba-
sically, @(t) may have period ofTp, wherei is an
integer (not equal to zero).

The general solutions dq. (1)are given by:

y(1) = Aya(?) + Bya(1),
y(t) = Ay1(t) + Bya(1) (2)
wherey; (t) andys(t) are two particular independent

solutions ofEq. (1)
The following system is valid foy; (t) andy:(t):

y1(t + To)
va(t + To)

y1(?)
y2(t)

o102

B1B2

wherea1, a», B1 andB2 are elements of the transfor-
mation matrix of partial solutions dq. (1)

Now, using Egs. (2) and (3)we can obtain the
following system for the general solution Bfy. (1)

3)

y(t +To) = ¥3()y(t) + Ya)y (),
y(t + To) = Ya(0)y(@) + Y2(t)y (1) 4

For they ;(t) functions we have:

Y1) yo = a2y5(t) — P1y2(1) + (a1 — B2)y1(1)F2(1),
Ya(t)yo = Bry1(t) y1(t) — az2y2(t) y2(t)
+B2y2(t) y1(t) — ary1(2)y2(1),
Y3(t)yo = a2y2(t)y2(t) — Baya () ya(?)
+aay2(t)y1(t) — Bay1()y2(1),
Yat)yo = P1Y2(1) — a2y5(t) + (a1 — B2)y2(H)y1(t)
(5)

V2()y3(1) — () ya) =1,
V2(1) + ¥3(1) = 2f0

where g is the stability parameter varying from1
to +1 within a stable region.

It can be seen fronkq. (4)thaty ;(t) are elements
of the transformation matrix of the general solution of
the Hill equation.

It follows from Eq. (4)that:

y(t = To) = Y2()y(1) — Ya@)y(1),
vy —To) = =) y(@) + ¥3(0) y(1) (6)
Now, usingEgs. (5) and (6jve can prove the valid-

ity of known recurrent formulas for general solutions
of the Hill equation:

y(t + To) + y(t — To) = 2Poy (1),
y(& + To) + y(t — To) = 2P0y (1) 7

The following system of characteristic solutions sat-
isfies system (7):

yx(n) = y(t)cosvTon + [Ya(t)y(1)
. , sinvTon
+y(@)(P3(r) — ﬁO)]Sin—vTo’

yx(n) = y(t)cosvTon + [Y1(2)y(1)

) sinvTon
+y (1) (Y2(t) — Bo)l sinvTo

®)

Characteristic solutions (8) determine coordinate
y¢(n) and velocity y,(n) of an ion over periodlg
starting fromy(t) andy(¢). Other words, characteristic
solutions (8) relate to the ion trajectory at moment

However, more common systems of equations can
be validated by usingqgs. (4) and (8)

y(t +1Tg) = Y3,y () + ¥4, y(),
y(t+iTo) = Y1,y (@) + ¥2,y(t) 9
and

y(t —iTo) = Y3 iy (t) + Ya—iy(t),

y(t —iTo) = Y1 —iy(t) + Y2, i y(1) (10)
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and fromEq. (8) we obtain an expression faf ; ;
assuming instead ofn:

Now, considerind=gs. (2), (3), (5) and (11We can
show that the following equation is valid fat2:

sinvToi
sinvTy ’

V2,i (1) = cosvToi + [Y2(r) — Bo]

RZ30)
1-p2
—Y2.1(t0)} — Ya.1(10)¥3] (14)

whereyp, yo are the initial coordinate and velocity;
to is the initial phase (phase of ion introduction into
the rf field); t is the moment when the characteristic
solution matches the general solution.

Here we should note that:

Y1, (1) = Y1(t)

Y5 = [¥1,1(10)y8 — yoyo{¥3,1(t0)
sinvToi
sinvTy ’
sinvToi

sinvTy’

Y3, (t) = cosvToi + [¥3(t) — Bo]

sinvToi
sinvTg

Va,i (1) = Ya(t) (11)

Substituting—i instead of into Eq. (11) we obtain

the respective equations fgr; ;. e the Eq. (14)obtained here matches completely the
The procedure, developed above, yields an infinite  analogous equation shown [i;

set of characteristic solutions of the Hill equation for o all characteristic solutions have the same values of

different values of, which can be called an order of the extremum amplitude independent of the oiider

a characteristic solution. Such characteristic solutions  (for the case whereis selected for the maximum

have the following general form: Vaa(t)).

yx,i(n) = y(@)cosivTon + [V, (1) y(1) + y (1) (Y3, (1) Let us consideEq. (12) We note that therZ cal-

sinivTon culation procedure becomes incorrect when
—cosivTg)] ————,
, _ ~ sinivTo . sinivTyo — 0 or cos (acosBp) = +1 (15)
Yx,i(n) = y(H)cosivTon + [y, (1) y(1) + y (@) (Y2, (1)
. sinivTon In order to findy, ;(n) andy, ; (n) properly for this
—cosivTp)] ——— 12 . ’ . ’ .
vTo)l sinivTy (12) case, we rewrité&q. (12)in the following form:
where sinivTo(n — 1)
Yri®) = =y(t) sinivT,
cosvTo = Bo; B(i) = cosi(acosBp) = cosivTo; siniz?T Y
. 0
sinivTo = (1 — cos i (acosBp))Y/? +y(t + ITo)m,
sinivTo(n — 1)

Characteristic solutions (12) determine coordinates y . (n) = —y(1)

and velocities of an ion over periddp. In this case, Si”?”TO
y(t) andy(r) are the coordinate and velocity of the ion +y(t + iTo)SI.m.ﬂ (16)
at the moment when the general solution matches the sinivTo

respective characteristic solution.

Following our methodology, developed j4], we
obtain the following expression for the amplitude of
the characteristic solution of ordeérfor the coordi-
nate:

Rearrangind=qg. (16)using the Moivre formula and
consideringegs. (15) and (11jve obtain:

yx.i(n) = y()(cosivTp)",
Vi (n) = y(t)(cosivTp)" (17)

Y2, =y + Py It follows from Eq. (17)that if cosivTo = +1 then
- Simivdo _ , the general solution dfq. (1)has the following prop-
x [y(@©)¥a,i () + y(){¥3,i (1) — cosivTo}] erty: precisely same coordinate and velocity values

(13) occur eachTy for any integeri. If cosivTyg = —1,
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then such repetition is observed eveliyfand, for the coordinate and velocity change their signs every
everyiTp, the coordinate and velocity values show a 2Tp, and the general solution has a period @64
change of sign only (this has no influence on trapping  Thus, Eq. (15) leads to a different procedure for
conditions). This means, for example, that the general calculation of the maximum ion excursion from the
solution has a bounded set of various maxima for the origin and we should expect th&q. (14)introduces
case when condition (15) is fulfilled. If the general a considerable error in those points of the stability
solution has one maximum during the periggithen diagram wherdeq. (15)is fulfilled.
there could be less than or equal ttifferent maxima, We have shown firstly if6—9] that the stability dia-
which repeat in periods. gram for QMS has fine structure: the stability diagram
Another important conclusion follows from contains quasi-stability lines or lines of parametric
Eq. (17) These expressions are valid for argnd the modulation resonances. It was showrjihthat these

general solutions, for all points wheksy. (15)is ful- lines degenerate into bands in the presence of nonlin-
filled, are periodic functions offg when cosvTy = ear field distortions within quadrupole mass analyz-
+1 and they have period ofiBy when cosvTp = ers. The respective modulation of the rf wavefdgh
—1. For example, let us consider the working point transforms these lines into instability bands (zones).
lying at Bp = 0. ThenvTy = n/2 and co$vTy = The equation that determines quasi-stability life8]

cosi(/2). If i = 2 then co$vTg = —1. In this case matche<q. (15) Thus, the obtaineltq. (14)is valid

Table 1
The values of stability parametegy for different quasi-stability lines
i k=0 k=1 k=2 k=3 k=4 k=5
(a) The values ofg—)
1 -1 -1 -1 -1 -1 -1
2 0 0 0 0 0 0
3 0.5 -1 0.5 0.5 -1 0.5
4 0.707107 —0.7071068 —0.707107 0.707107 0.707107 —0.707107
5 0.809017 —0.309017 -1 —0.309017 0.809017 0.809017
6 0.866025 0 —0.866025 —0.866025 0 0.8660254
7 0.900969 0.22252093 —0.62349 -1 —0.62349 0.2225209
8 0.92388 0.38268343 —0.382683 —0.92388 —0.92388 —0.382683
9 0.939693 0.5 —0.173648 —0.766044 -1 —0.766044
10 0.951057 0.58778525 0 —0.587785 —0.95106 —0.951057
d=1 d=2 d=3 d=4 d=5 d=6
(b) The values of8o+)
1 1 1 1 1 1 1
2 -1 1 -1 1 -1 1
3 -0.5 -0.5 1 -0.5 -0.5 1
4 0 -1 0 1 0 -1
5 0.309017 —0.809017 —0.809017 0.309017 1 0.309017
6 0.5 -0.5 -1 -0.5 0.5 1
7 0.62349 —0.2225209 —0.900969 —0.900969 —0.22252 0.6234898
8 0.707107 0 —0.707107 -1 —0.70711 0
9 0.766044 0.17364818 -0.5 —0.939693 —0.93969 -0.5
10 0.809017 0.30901699 —0.309017 —0.809017 -1 —0.809017
11 0.841254 0.41541501 —0.142315 —0.654861 —0.959493 —0.959493
12 0.866025 0.5 0 -0.5 —0.866025 -1
13 0.885456 0.5680647 0.1205367 —0.354605 —0.748511 —0.970942

14 0.900969 0.6234898 0.2225209 —0.222521 —0.623489 —0.900969
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for all points within the stability diagram excluding expressions:
those points that lie on the quasi-stability lines (or 2
close to them). a? 20 UlZO
It follows from Eq. (12)that parametes(i) is equal l+no+po z
to £1 on the quasi-stability line®]. In this case, the

» 20 U2I} (%)
values of8o can be calculated as follows: 2= 1 0+ po 22’ S A
w(2k + 1) 2rd %\ 51 12
Bo) = cos— and o) = Cos——, po=(=). m=-—  m=- (18)
Ya To To
wherek =0,1,2,... andd =1,2,3, ... whereo is the charge-to-mass ratig;, y, andz, are
The value off(i) = —1 corresponds to thfo(-) the closest distances between the center of the elec-
parameter, an@ (i) = +1 corresponds tO. thBo+) trode system and the ring and endcap electrodes along
parameter. One can see from the expressionsdar the respective axes. For this waveform, the 1(z})

lines within the stability zone of QMS. The values of

Bory and Bo(4 calculated fori = 1,...,10, k = V11t =a1{cosha2n2 sinhayn, + 1 (ﬂ n @)
0,...,5andd = 1,...,6 are shown iriTable 1(a) ’ 2\az a1
and (b) respectively. These tables are valid for any
rf waveform used in QMS. The simplest way to find
the extreme values of general solutionseaf. (1) in
the case where the working point of an ion lies on x sinhaznz coshain1 21 } (19)
a quasi-stability line, is to use an rf voltage with a
rectangular waveform.

. 1/a a
x coshaini sinhazno + = (—2 - —1>
2\a1 ap

1
¥2,1(tg) = coshaznz coshain + e ( )
3. Calculation of oscillation amplitude for ions, sinh sinh 1 az
characteristic points of which lie on x sinhaznz sinhayi + 5\ - =~ ay
quasi-stability lines within the stability zone x sinhagnz sinhain12:) (20)

Fig. lillustrates an rf voltage of rectangular wave- 1/a; a>
form. For parametera, anday, we have the following ~ ¥/3,1(tg) = coshaznz coshain: + > < + —)

a ay
. . 1/a2 a1
‘ x sinh sinhu | ===
U A anz 1+ 5 (al az)
x sinhaznz sinhain12t (21)
U,
! 1 ap  az
- V4,1(10) = COShaznz sinhainy + = A
p a» ap
. 1
U x coshaini sinhazno + = (ﬂ — 2)
2\ay a1
t t .
! 2 x sinhazn COSI’IalmZté} (22)
Ty

Let us consider ion injection during the focusing
Fig. 1. An rf voltage of rectangular waveform. pulse at the phasg). In this case we can find the
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coordinatejo and velocityy, at the beginning of the Let us consider an example of how the amplitude
focusing pulse by using the initial parameters of ion of ion oscillation can be calculated for the case where
motion. For this purpose simple equations can be used:the working point lies on the quasi-stability liflg =

1 ) 1 0. We assume here that the field within the QMS is
<— + té) i sinainy (— + té)

Yo = yoCOSaim created by bipolar pulses with equal amplitudes (EA

mode). This is a very promising rf voltage and its par-

2 . . .
(23) ticular case is a 50% duty-cycle symmetric rectangular
Yo=a1 [yo sinaim (E + fé) waveform or “meander.”
2 In this casej = 2, as follows fromEq. (15) This
. 1 X
+E003a1n1 (_ T té)] (24) means that there are only twp different extrema (or
az 2 only one) for the general solution &fq. (1) The val-

Now, usingEq. (8) we find the coordinate and ve- ues of these extrema far = 0 (the first extremum)
locity of the ion at the beginning of theth period ~ and forn = 1 (the second extremum) are calculated
of the rf field and its extreme displacement from the USINgEgs. (25)-(27)In this case, the expressions for

origin of the coordinates for an arbitrary period: Y11 can be simplified:
1. T g — o 1 — i
Y2, (n) = y2(n) + a_zyf(n) (25) Y11 = —aicoshainz, V21 I sinhainz,
_ o ! _ V31 = —sinhayny, Va1 = —coshainy,
where index f indicates the focusing pulgg(n) and ai
. (n) are given by: ap = 2 (29)
) L. 2m
sinvTon (26) 2
X —
sinvTo Y2(0) = 3 + 28 (30)
ay
Vi (n) = yocosuTon + [Y1,150 + Yo(¥2,1 — )] 5 5 _ /
sinvTon 27 Y5 (1) = yg [cosh 2i1n2 — sinh 22112 €S Zign1g)
X sinvTy o . _ / 5’(2)
_ . +2yo=—=sinh Zu1nz sin 2a1mty + =
The values of; 1 can be found usinggs. (19)-(22) ai aj
Here we assume that = —0.5; a; is an imaginary x [cosh 2112 + sinh 2111, cos 211;71;6]
quantity anday is a real quantity. (31)

Using Eg. (25) we calculate the first extremum for
n = 0, the second extremum far= 1, etc. If the ion
is injected during the defocusing pulse then the initial
parameters are transformed as follows: -2

-
Yf%df ©= ycz) coshana(1 — 210) + 2yoz—lS|nha1n2

. , . x(1— 2t5) + 2Ocosharna(1— 25)  (32)
yo = yo coshaznz (— - t(’)) +2%inhayn, (— - té) , “
2 az 2
5o = az [yosinhaznz (% _ z5> V2, (D = y§ cosharnz(L+ 21§) — 250 Csinhayz
Yo 1, N :
+a—2cosha2n2 (E — zoﬂ (28) x(1+ 219 + Ecoshamz(l +215)  (33)

SubstitutingEq. (28)into Egs. (26) and (27)we where f and df represent the focusing and defocusing
obtain extrema for different. pulses, respectively.
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It follows from Egs. (30) and (31that the maximum
ion excursion from the origin does not depend on the
initial phaser) if Y2 (0) > YZ (1). It can be shown

that the minimal value offr%f (1) is given by:
)‘)2
Ya (D min) = (yé + n_%> exp(—m) (34)
for phaser,
/ 2yo(yo/m)
tg2aimtgo=——— 75— (35)
O -G8
For a working point lying on thegy = 0

guasi-stability line, there is a range of phases within
the focusing pulse with a constant oscillation ampli-
tude. This phase range lies in the neighborhood of
phaser, given by Eq. (35) It follows from Eq. (31)
that Yr%f (1) increases at phase lying at the edges

of the focusing pulser{ = £0.5) up to the value:

5 Yo _.

a—2:| cosh 2i1n2 + 2yo—15|nh 2112

Ye @) = [yg +
1 a

(36)

and becomes greater thﬁ,ﬁf (0). At phaser, that cor-
responds to the optimal phase of the first kirfjd=€ 0)
the following equation can be obtained frdfq. (31)

<2
Y
Y (Dly—o = ¥§ €XR(—2a1n2) + a—g exp(2a1n2)
1
(37)

Comparing this equation witkq. (30) we notice
that Y2 (0) > YZ (1) for low values ofyo and the
“plateau” at the maximum amplitude vs. the injection
phase curve includes the optimal phase of the first
kind. The optimal phase of the first kind does not lie at
the “plateau” if the initial velocity exceeds the critical
velocity yoor = 0.6531yp; the “plateau” narrows but
still lies around phasg), (seeEq. (35).

If an ion is injected at a phase of the focusing pulse
then the maximum ion excursion changes wijffac-
cording toEgs. (32) and (33)

Now we compare calculations of maximum
ion excursion from the origin usingq. (14) and

321

Egs. (30)—(33)for the working points lying at the
Bo = 0 quasi-stability line (fom1 = n2).
For the optimal phase of the first kind we have:

2
Ym Eq (14

= 1.24377 (38)

Y r% Eq (30) | gy=0

Thus, the general expression (14) yields an error
of 24.4% for the amplitude of ion excursion at the
points lying at they = 0 quasi-stability line. This
calculation was made foyg = 1, yo = —0.5 and
Up—p = 103V that corresponds to an injection energy
of 4.22 eV (the type of waveform is here the “meander”
with zero dc componentj; = 7).

If the injection phase moves from the optimal phase
of the first kind towards the edge of the focusing pulse,
then the value of the ratio given byg. (38)changes
and its value decreases to 1.078. This means that the
calculation error oEq. (14)decreases to about 8%.

If the ion is injected at phases of the defocusing
pulse then one should ugsys. (32) and (33)For the
case where the initial phase coincides with the optimal
phase of the second king, (= 0), Eq. (33)yields a
greater value ofr2 than the value calculated using
Eqg. (32) and the initial conditions described above
(negative injection energy). Here we usg. (33)

For this case, we make the following estimation:

2
Ym Eqg (14
Y2
mEa (33) | gy=0

— 1.49226 (39)

Here we obtain a greater deviation (about 50%) in
comparison with the case considered above.

In practice, to evaluate ion trap performance, so
called amplitude-phase characteristics (APC) of the
first and second kinds are used. The APC of the first
kind is the dependence of the amplitude of the os-
cillatory ion motion on the injection phase calculated
for the following initial conditions:yg = 1, yo = O.
The APC of the second kind is calculated fer= 0,
yo=1.

The APC of the first kind, as follows frofag. (14)
is described by the following expression:

1-p2

2 _
ml@,0 =

(40)
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The theory developed above allows us to obtain the
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The APC of the first kind for the phases within

APC of the first and second kinds for the case where the defocusing pulse, as follows frofg. (14) is de-

the working point lies on a quasi-stability line. For
this purpose, for example fggp = 0, we can use
Egs. (30) and (31if the initial phase corresponds to
the focusing pulse, andgs. (32) and (33 the initial
phase lies within the defocusing pulse. Thags. (30)
and (31)for the focusing pulse yield two expressions
to describe the APC of the first kind:

erhf 1.0y = [coshr — sinhz cosm1))] (41)
and
Yn2"|1f la0 =1 (42)

We see that the oscillation amplitude calculated
from Eq. (41)for the optimal phase of the first kind
(tp = 0) is less than the amplitude obtained from
Eqg. (42) Thus, in the neighborhood of this phase, one
should useEq. (42)up to the critical phasg) ., that
corresponds to the following condition:

coshr — sinhz cosm) = 1 (43)
or
1o = 0.1305

For phaseg) > 1; . lying within the focusing pulse,
the APC of the first kind is derived usirigg. (41) At
the edges of the focusing pulse we have:

Y%, (1,0) = coshr = 11592

The APC of the first kind determined kyq. (40)
has the value of 2|(1.0) equal to 1 at the optimal phase
of the first kind Eq. (42)yields the same value) and
at the edges of the focusing pulse:

Yn2"||(l,0) = 1207

Thus, the APC of the first kind calculated using
Eqg. (14)has one minimum equal to 1. The other val-

scribed by:

b
Yalwo = exp(E) coshr 1) (44)

The value on,%df(l, 0) at the optimal phase of the
second kind# = 0) is equal to 4.81, and at the edges
of the defocusing pulse:

g b4
Yr%dfl(1,0) = exp(E) coshE =1207 (45)

Now, we obtain an expression for the APC of the

first kind within the defocusing pulse fgy = 0.
FromEgs. (32) and (33)ve have:

Y, (Olwo) = coshaini(1—2rp) and

Y&, (Dlwo = coshaini(1+ 2r) (46)

It follows from Eq. (46) that the values of
Y2, 0lwo andYZ (110 are equal to each other
at the optimal phase of the second kingl £ 0) and
differ at the edges of the pulsg (= £0.5). This means
that the APC of the first kind has a minimunvgt= 0:

2 _ T o_
. o = coshE =251 47
(tg=0)
At the edges of the defocusing pulsg £ +0.5):
2 _ _
me | w0 = coshr = 1159 (48)
(t,=+0.5)

Comparing Egs. (47) and (48)with Eqgs. (44)
and (45)(obtained fronkq. (14), we see thakq. (14)
yields a minimum value twice as large as that ob-
tained fromEq. (47) the APC of the first kind, cal-
culated usingeq. (14) exhibits greater values by 4%
at the edges of the defocusing pulse. Thus, the APC
of the first kind goes above the true curve within the
defocusing pulse.

APC of the first and second kinds are used to esti-
mate the trapping efficiency for different ion injection

ues of amplitudes are greater than those of amplitudestechniques. If the ionizing electron beam is injected

calculated fromEqgs. (41) and (42)However, the re-
markable property of the APC obtained frétgs. (41)
and (42)is that this curve has a “plateau” about the
minimum.

through a narrow slit in the ring electrode then the ions
created have small initial velocities in th€r plane,
but considerable initial coordinates. In this case, the
trapping efficiency in theXY plane is determined by
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the APC of the first kind for the(y) coordinate; the
trapping efficiency for ions along thé axis is deter-
mined by the APC of the second kind. Alternatively,
if a narrow ionizing electron beam is injected along
theZ axis, then the trapping efficiency in tié plane
is determined by the APC of the second kind for the
X(y) coordinate, and the APC of the first kind for the
z coordinate is important for the trapping efficiency
along theZ axis.

From Eq. (14)we obtain the APC of the second
kind in the following form:

_ Ya1()Ya1(to)
1-p3

If Bo = 0, then for a rectangular rf waveform (me-
ander,n1 = n2 with zero dc component) we have:

Yalon (49)

1
Y2 (0.1 = = (50)
1
2 1 H /
Yr Dloy = —2(cosh7r + sinhz cosmty) (51)
ag
and
2 1 T /
Yoy @lo01) = ?coshg(l — 215) (52)
1
2 1 T /
Yo Dl = ?coshi(l + 2tp) (53)
1

It follows from Egs. (50) and (51that the shape of
the APC of the second kind is determinediby. (51)
only and there is one maximum in the middle of the
focusing pulse aty = 0. The value of the maximum
is:
y2

Mimax

1
lo,1 = FGXF(T[) =234 (54)

At the edges of the focusing pulse, the APC pos-
sesses the following value:

1
Yn%fmmko,l) = —coshr = 1174 (55)

The APC of the second kind, as follows from
Egs. (52) and (53)has a minimum in the middle of
the defocusing pulse:

1 T
Yn%dfmin l0.1) = —5Cosh = 0.2542 (56)
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and two maxima at the edges of the defocusing pulse
whose values coincide with those obtained from
Eq. (55)

Eq. (49)yields the value of 2.34 (that matches
Eq. (54) for the APC of the second kind in the middle
of the focusing pulse, and

Y2

1 T T
m Eq @9l = Fexp(g) coshz =1.223

(67)

at the edges; this value is 4% greater than that obtained
from Eq. (55)

For the defocusing pulse, we obtain fran. (49)

YZy Eq agl0.D) = %exp(%) coshr1) (58)
Here, the minimum is in the middle of the pulse,
and its value is 0.487. This is almost twice as large

as the value obtained froiq. (50) Eq. (58)yields a
maximum value at) = +0.5 that matches the value
determined frontq. (57) but is greater than the value
of Eq. (55)

Thus, Eq. (14)gives an inflated APC of the both
kinds within the whole periodyp.

At the end of this part, the author is ready to an-
swer a reader’s basic question: what is a real reason
for the disagreement between the amplitudes of ion
oscillations determined from different expressions?
Now we can say surely: the main reason of this dis-
agreement is that the oscillation amplitude vs. the
parameter stability curve has a spiking structure. This
means that the amplitude of ion oscillatory motion
decreases sharply if the working point on the stability
diagram approaches a quasi-stability line (parametric
resonance line). Thus, the revealed spiking structure
of the dependence between the oscillation amplitude
and the working point location is determined com-
pletely by the fine structure of the stability diagram,
about which we have reported previoufy9,10]

In Part Il of this article, we investigate the fine ef-
fects discovered in the amplitude of ion oscillations
within the QMS and we compare the values of ampli-
tudes calculated from the obtained analytical expres-
sions and by direct trajectory calculations.
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