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Some properties of charged particle trajectories in
quadrupole mass spectrometers

Part I. General theory
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Abstract

A general theory of extreme characteristic solutions of the Hill equation is developed. The theory yields reliable expressions
for calculation of amplitudes of charged particle oscillations within quadrupole mass spectrometers. It is demonstrated that
trajectories of ions, operating points of which lie on quasi-stability lines (lines of modulation resonances), have remarkable
features. Such ions have substantially smaller amplitudes than do those ions having operating points which do not lie on
quasi-stability lines. The theory is quite general and can be applied for any rf waveform. A particular case of rectangular rf
voltage is illustrated by equations for amplitude-phase characteristics (APC), applicable for ions with operating points lying
on the quasi-stability lineβ = 0. It is demonstrated that APC of the first kind exhibits a flat region with relative amplitude of
ion oscillation equal to 1. (Int J Mass Spectrom 219 (2002) 315–324)
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The current state of quadrupole mass spectrome-
try (QMS) is characterized by a growing interest of
mass spectrometrists towards injection of externally-
generated ions into a quadrupole ion trap. To achieve
this aim, one needs a reliable theory that determines
amplitudes of ions injected into an rf field of a three-
dimensional ion trap driven by a trapping rf voltage
of arbitrary waveform. The theory of extreme char-
acteristic solutions of the Hill equation, sequentially
developed in our laboratory[1,2], yields simple ana-
lytical expressions for the amplitude of ion oscillation
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in quadrupole mass spectrometers[3] for an arbitrary
set of initial conditions of ion motion and arbitrary
rf waveforms. The use of this method, for instance,
allowed us to optimize rf voltage waveform[4] and
to achieve a new prospective waveform that we called
the EC-signal.

When we checked the accuracy of expressions
obtained by the method of extreme characteristic so-
lutions, we found that the calculation error may reach
15–20% for some operating points in the stability di-
agram. Such an error occurred within a narrow range
of stability parameters (for example,a and q values
in the Mathieu equation) and could not be accounted
for by the relatively small mean error. However, the
development of ion trapping theory urged us to find
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an appropiate explanation for this effect. As a re-
sult, a more general theory of extreme characteristic
solutions was developed and its basic principles are
explained in this paper.

2. General theory of extreme characteristic
solutions of the Hill equation

Let us consider the Hill equation in the following
form:

ÿ(t)+Φ(t)y(t) = 0 (1)

whereΦ(t) is a periodic function of periodT0. Ba-
sically, Φ(t) may have period ofiT0, where i is an
integer (not equal to zero).

The general solutions ofEq. (1)are given by:

y(t) = Ay1(t)+ By2(t),

ẏ(t) = Aẏ1(t)+ Bẏ2(t) (2)

wherey1(t) and y2(t) are two particular independent
solutions ofEq. (1).

The following system is valid fory1(t) andy2(t):∣∣∣∣ y1(t + T0)

y2(t + T0)

∣∣∣∣ =
∣∣∣∣ α1α2

β1β2

∣∣∣∣×
∣∣∣∣ y1(t)

y2(t)

∣∣∣∣ (3)

whereα1, α2, β1 andβ2 are elements of the transfor-
mation matrix of partial solutions ofEq. (1).

Now, using Eqs. (2) and (3)we can obtain the
following system for the general solution ofEq. (1):

y(t + T0) = ψ3(t)y(t)+ ψ4(t)ẏ(t),

ẏ(t + T0) = ψ1(t)y(t)+ ψ2(t)ẏ(t) (4)

For theψj (t) functions we have:

ψ1(t)γ0 = α2ẏ
2
2(t)− β1ẏ

2
1
(t)+ (α1 − β2)ẏ1(t)ẏ2(t),

ψ2(t)γ0 = β1ẏ1(t)y1(t)− α2ẏ2(t)y2(t)

+β2ẏ2(t)y1(t)− α1ẏ1(t)y2(t),

ψ3(t)γ0 = α2ẏ2(t)y2(t)− β1ẏ1(t)y1(t)

+α1ẏ2(t)y1(t)− β2ẏ1(t)y2(t),

ψ4(t)γ0 = β1ẏ
2
1(t)− α2y

2
2(t)+ (α1 − β2)y2(t)y1(t)

(5)

UsingEq. (3)we can show that all theψj (t) func-
tions are periodic functions of periodT0 and the
following expressions are valid for them:

ψ2(t)ψ3(t)− ψ1(t)ψ4(t) = 1,

ψ2(t)+ ψ3(t) = 2β0

whereβ0 is the stability parameter varying from−1
to +1 within a stable region.

It can be seen fromEq. (4)thatψj (t) are elements
of the transformation matrix of the general solution of
the Hill equation.

It follows from Eq. (4) that:

y(t − T0) = ψ2(t)y(t)− ψ4(t)ẏ(t),

ẏ(t − T0) = −ψ1(t)y(t)+ ψ3(t)ẏ(t) (6)

Now, usingEqs. (5) and (6)we can prove the valid-
ity of known recurrent formulas for general solutions
of the Hill equation:

y(t + T0)+ y(t − T0) = 2β0y(t),

ẏ(t + T0)+ ẏ(t − T0) = 2β0ẏ(t) (7)

The following system of characteristic solutions sat-
isfies system (7):

yx(n) = y(t)cosvT0n+ [ψ4(t)ẏ(t)

+y(t)(ψ3(t)− β0)]
sinvT0n

sinvT0
,

ẏx(n) = ẏ(t)cosvT0n+ [ψ1(t)y(t)

+ẏ(t)(ψ2(t)− β0)]
sinvT0n

sinvT0
(8)

Characteristic solutions (8) determine coordinate
yx(n) and velocity ẏx(n) of an ion over periodT0

starting fromy(t) andẏ(t). Other words, characteristic
solutions (8) relate to the ion trajectory at momentt.

However, more common systems of equations can
be validated by usingEqs. (4) and (6):

y(t + iT0) = ψ3,iy(t)+ ψ4,i ẏ(t),

ẏ(t + iT0) = ψ1,iy(t)+ ψ2,i ẏ(t) (9)

and

y(t − iT0) = ψ3,−iy(t)+ ψ4,−i ẏ(t),
ẏ(t − iT0) = ψ1,−iy(t)+ ψ2,−i ẏ(t) (10)
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and from Eq. (8) we obtain an expression forψj ,i
assumingi instead ofn:

ψ1,i (t) = ψ1(t)
sinvT0i

sinvT0
,

ψ2,i (t) = cosvT0i + [ψ2(t)− β0]
sinvT0i

sinvT0
,

ψ3,i (t) = cosvT0i + [ψ3(t)− β0]
sinvT0i

sinvT0
,

ψ4,i (t) = ψ4(t)
sinvT0i

sinvT0
(11)

Substituting−i instead ofi into Eq. (11), we obtain
the respective equations forψj ,−i .

The procedure, developed above, yields an infinite
set of characteristic solutions of the Hill equation for
different values ofi, which can be called an order of
a characteristic solution. Such characteristic solutions
have the following general form:

yx,i(n) = y(t)cosivT0n+ [ψ4,i (t)ẏ(t)+ y(t)(ψ3,i (t)

−cosivT0)]
sinivT0n

sinivT0
,

ẏx,i (n) = ẏ(t)cosivT0n+ [ψ1,i (t)y(t)+ ẏ(t)(ψ2,i (t)

−cosivT0)]
sinivT0n

sinivT0
(12)

where

cosvT0 = β0; β(i) = cosi(acosβ0) = cosivT0;
sinivT0 = (1 − cos2 i(acosβ0))

1/2

Characteristic solutions (12) determine coordinates
and velocities of an ion over periodiT0. In this case,
y(t) andẏ(t) are the coordinate and velocity of the ion
at the moment when the general solution matches the
respective characteristic solution.

Following our methodology, developed in[4], we
obtain the following expression for the amplitude of
the characteristic solution of orderi for the coordi-
nate:

Y 2
m,i = y2(t)+ 1

sin2 ivT0

× [ẏ(t)ψ4,i (t)+ y(t){ψ3,i (t)− cosivT0}]2
(13)

Now, consideringEqs. (2), (3), (5) and (11), we can
show that the following equation is valid forY 2

m:

Y 2
m = −ψ4,1(t)

1 − β2
0

[ψ1,1(t0)y
2
0 − y0ẏ0{ψ3,1(t0)

−ψ2,1(t0)} − ψ4,1(t0)ẏ
2
0] (14)

wherey0, ẏ0 are the initial coordinate and velocity;
t0 is the initial phase (phase of ion introduction into
the rf field); t is the moment when the characteristic
solution matches the general solution.

Here we should note that:

• the Eq. (14)obtained here matches completely the
analogous equation shown in[4];

• all characteristic solutions have the same values of
the extremum amplitude independent of the orderi
(for the case wheret is selected for the maximum
ψ4,1(t)).

Let us considerEq. (12). We note that theY 2
m cal-

culation procedure becomes incorrect when

sinivT0 → 0 or cosi(acosβ0) ⇒ ±1 (15)

In order to findyx ,i(n) andẏx,i (n) properly for this
case, we rewriteEq. (12)in the following form:

yx,i(n) = −y(t)sinivT0(n− 1)

sinivT0

+y(t + iT0)
sinivT0n

sinivT0
,

ẏx,i (n) = −ẏ(t)sinivT0(n− 1)

sinivT0

+ẏ(t + iT0)
sinivT0n

sinivT0
(16)

RearrangingEq. (16)using the Moivre formula and
consideringEqs. (15) and (11)we obtain:

yx,i(n) = y(t)(cosivT0)
n,

ẏx,i(n) = ẏ(t)(cosivT0)
n (17)

It follows from Eq. (17)that if cosivT0 = +1 then
the general solution ofEq. (1)has the following prop-
erty: precisely same coordinate and velocity values
occur eachiT0 for any integeri. If cosivT0 = −1,
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then such repetition is observed every 2iT0 and, for
every iT0, the coordinate and velocity values show a
change of sign only (this has no influence on trapping
conditions). This means, for example, that the general
solution has a bounded set of various maxima for the
case when condition (15) is fulfilled. If the general
solution has one maximum during the periodT0 then
there could be less than or equal toi different maxima,
which repeat ini periods.

Another important conclusion follows from
Eq. (17). These expressions are valid for anyt and the
general solutions, for all points whereEq. (15)is ful-
filled, are periodic functions ofiT0 when cosivT0 =
+1 and they have period of 2iT0 when cosivT0 =
−1. For example, let us consider the working point
lying at β0 = 0. ThenvT0 = π /2 and cosivT0 =
cosi(π/2). If i = 2 then cosivT0 = −1. In this case

Table 1
The values of stability parametersβ0 for different quasi-stability lines

i k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

(a) The values ofβ0(−)
1 −1 −1 −1 −1 −1 −1
2 0 0 0 0 0 0
3 0.5 −1 0.5 0.5 −1 0.5
4 0.707107 −0.7071068 −0.707107 0.707107 0.707107 −0.707107
5 0.809017 −0.309017 −1 −0.309017 0.809017 0.809017
6 0.866025 0 −0.866025 −0.866025 0 0.8660254
7 0.900969 0.22252093 −0.62349 −1 −0.62349 0.2225209
8 0.92388 0.38268343 −0.382683 −0.92388 −0.92388 −0.382683
9 0.939693 0.5 −0.173648 −0.766044 −1 −0.766044

10 0.951057 0.58778525 0 −0.587785 −0.95106 −0.951057

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

(b) The values ofβ0(+)
1 1 1 1 1 1 1
2 −1 1 −1 1 −1 1
3 −0.5 −0.5 1 −0.5 −0.5 1
4 0 −1 0 1 0 −1
5 0.309017 −0.809017 −0.809017 0.309017 1 0.309017
6 0.5 −0.5 −1 −0.5 0.5 1
7 0.62349 −0.2225209 −0.900969 −0.900969 −0.22252 0.6234898
8 0.707107 0 −0.707107 −1 −0.70711 0
9 0.766044 0.17364818 −0.5 −0.939693 −0.93969 −0.5

10 0.809017 0.30901699 −0.309017 −0.809017 −1 −0.809017
11 0.841254 0.41541501 −0.142315 −0.654861 −0.959493 −0.959493
12 0.866025 0.5 0 −0.5 −0.866025 −1
13 0.885456 0.5680647 0.1205367 −0.354605 −0.748511 −0.970942
14 0.900969 0.6234898 0.2225209 −0.222521 −0.623489 −0.900969

the coordinate and velocity change their signs every
2T0, and the general solution has a period of 4T0.

Thus, Eq. (15) leads to a different procedure for
calculation of the maximum ion excursion from the
origin and we should expect thatEq. (14)introduces
a considerable error in those points of the stability
diagram whereEq. (15)is fulfilled.

We have shown firstly in[6–9] that the stability dia-
gram for QMS has fine structure: the stability diagram
contains quasi-stability lines or lines of parametric
modulation resonances. It was shown in[7] that these
lines degenerate into bands in the presence of nonlin-
ear field distortions within quadrupole mass analyz-
ers. The respective modulation of the rf waveform[8]
transforms these lines into instability bands (zones).
The equation that determines quasi-stability lines[5,8]
matchesEq. (15). Thus, the obtainedEq. (14)is valid
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for all points within the stability diagram excluding
those points that lie on the quasi-stability lines (or
close to them).

It follows from Eq. (12)that parameterβ(i) is equal
to ±1 on the quasi-stability lines[9]. In this case, the
values ofβ0 can be calculated as follows:

β0(−) = cos
π(2k + 1)

i
and β0(+) = cos

2πd

i
,

wherek = 0,1,2, . . . andd = 1,2,3, . . .
The value ofβ(i) = −1 corresponds to theβ0(−)

parameter, andβ(i) = +1 corresponds to theβ0(+)
parameter. One can see from the expressions forβ0(−)
andβ0(+) that there is an infinite set of quasi-stability
lines within the stability zone of QMS. The values of
β0(−) and β0(+) calculated fori = 1, . . . ,10, k =
0, . . . ,5 andd = 1, . . . ,6 are shown inTable 1(a)
and (b), respectively. These tables are valid for any
rf waveform used in QMS. The simplest way to find
the extreme values of general solutions ofEq. (1), in
the case where the working point of an ion lies on
a quasi-stability line, is to use an rf voltage with a
rectangular waveform.

3. Calculation of oscillation amplitude for ions,
characteristic points of which lie on
quasi-stability lines within the stability zone

Fig. 1 illustrates an rf voltage of rectangular wave-
form. For parametersa1 anda2, we have the following

Fig. 1. An rf voltage of rectangular waveform.

expressions:

a2
1 = 2σ

1 + n0 + p0

U1T
2
0

z2
a

,

a2
2 = 2σ

1 + n0 + p0

U2T
2
0

z2
a

, n0 =
(
xa

za

)2

,

p0 =
(
xa

ya

)2

, η1 = t1

T0
, η2 = t2

T0
, (18)

whereσ is the charge-to-mass ratio;xa , ya andza are
the closest distances between the center of the elec-
trode system and the ring and endcap electrodes along
the respective axes. For this waveform, theψj ,1(t ′0)
functions are calculated as follows[4]:

ψ1,1(t
′
0)= a1

{
cosha2η2 sinha1η1 + 1

2

(
a1

a2
+ a2

a1

)

× cosha1η1 sinha2η2 + 1

2

(
a2

a1
− a1

a2

)

× sinha2η2 cosha1η12t ′0

}
(19)

ψ2,1(t
′
0)= cosha2η2 cosha1η1 + 1

2

(
a1

a2
+ a2

a1

)

× sinha2η2 sinha1η1 + 1

2

(
a1

a2
− a2

a1

)
× sinha2η2 sinha1η12t ′0 (20)

ψ3,1(t
′
0)= cosha2η2 cosha1η1 + 1

2

(
a1

a2
+ a2

a1

)

× sinha2η2 sinha1η1 + 1

2

(
a2

a1
− a1

a2

)
× sinha2η2 sinha1η12t ′0 (21)

ψ4,1(t
′
0)=

1

a1

{
cosha2η2 sinha1η1 + 1

2

(
a1

a2
+ a2

a1

)

× cosha1η1 sinha2η2 + 1

2

(
a1

a2
− a2

a1

)

× sinha2η2 cosha1η12t ′0

}
(22)

Let us consider ion injection during the focusing
pulse at the phaset ′0. In this case we can find the
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coordinateȳ0 and velocity ˙̄y0 at the beginning of the
focusing pulse by using the initial parameters of ion
motion. For this purpose simple equations can be used:

ȳ0 = y0 cosa1η1

(
1

2
+ t ′0

)
− ẏ0

a1
sina1η1

(
1

2
+ t ′0

)
(23)

˙̄y0 = a1

[
y0 sina1η1

(
1

2
+ t ′0

)

+ ẏ0

a1
cosa1η1

(
1

2
+ t ′0

)]
(24)

Now, usingEq. (8), we find the coordinate and ve-
locity of the ion at the beginning of thenth period
of the rf field and its extreme displacement from the
origin of the coordinates for an arbitrary period:

Y 2
mf
(n) = y2

x (n)+ 1

a2
1

ẏ2
x (n) (25)

where index f indicates the focusing pulse;yx(n) and
ẏx(n) are given by:

yx(n)= ȳ0 cosvT0n+ [ψ̄4,1 ˙̄y0 + ȳ0(ψ̄3,1 − β0)]

× sinvT0n

sinvT0
(26)

ẏx(n)= ˙̄y0 cosvT0n+ [ψ̄1,1ȳ0 + ˙̄y0(ψ̄2,1 − β0)]

× sinvT0n

sinvT0
(27)

The values of̄ψj,1 can be found usingEqs. (19)–(22).
Here we assume thatt ′0 = −0.5; a1 is an imaginary
quantity anda2 is a real quantity.

UsingEq. (25), we calculate the first extremum for
n = 0, the second extremum forn = 1, etc. If the ion
is injected during the defocusing pulse then the initial
parameters are transformed as follows:

ȳ0 = y0 cosha2η2

(
1

2
− t ′0

)
+ ẏ0

a2
sinha2η2

(
1

2
− t ′0

)
,

˙̄y0 = a2

[
y0 sinha2η2

(
1

2
− t ′0

)

+ ẏ0

a2
cosha2η2

(
1

2
− t ′0

)]
(28)

SubstitutingEq. (28) into Eqs. (26) and (27), we
obtain extrema for differentn.

Let us consider an example of how the amplitude
of ion oscillation can be calculated for the case where
the working point lies on the quasi-stability lineβ0 =
0. We assume here that the field within the QMS is
created by bipolar pulses with equal amplitudes (EA
mode). This is a very promising rf voltage and its par-
ticular case is a 50% duty-cycle symmetric rectangular
waveform or “meander.”

In this case,i = 2, as follows fromEq. (15). This
means that there are only two different extrema (or
only one) for the general solution ofEq. (1). The val-
ues of these extrema forn = 0 (the first extremum)
and forn = 1 (the second extremum) are calculated
usingEqs. (25)–(27). In this case, the expressions for
ψ̄1,1 can be simplified:

ψ̄1,1 = −a1 cosha1η2, ψ̄2,1 = sinha1η2,

ψ̄3,1 = −sinha1η2, ψ̄4,1 = 1

a1
cosha1η2,

a1 = π

2η1
(29)

Now, usingEqs. (25)–(27), we obtain:

Y 2
mf
(0) = y2

0 + ẏ2
0

a2
1

(30)

Y 2
mf
(1)= y2

0

[
cosh 2a1η2 − sinh 2a1η2 cos 2a1η1t

′
0

]
+2y0

ẏ0

a1
sinh 2a1η2 sin 2a1η1t

′
0 + ẏ2

0

a2
1

× [
cosh 2a1η2 + sinh 2a1η2 cos 2a1η1t

′
0

]
(31)

Y 2
mdf
(0)= y2

0 cosha1η2(1 − 2t ′0)+ 2y0
ẏ0

a1
sinha1η2

×(1 − 2t ′0)+ ẏ2
0

a2
1

cosha1η2(1 − 2t ′0) (32)

Y 2
mdf
(1)= y2

0 cosha1η2(1 + 2t ′0)− 2y0
ẏ0

a1
sinha1η2

×(1 + 2t ′0)+ ẏ2
0

a2
1

cosha1η2(1 + 2t ′0) (33)

where f and df represent the focusing and defocusing
pulses, respectively.
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It follows from Eqs. (30) and (31)that the maximum
ion excursion from the origin does not depend on the
initial phaset ′0 if Y 2

mf
(0) > Y 2

mf
(1). It can be shown

that the minimal value ofY 2
mf
(1) is given by:

Y 2
mf
(1)(min) =

(
y2

0 + ẏ2
0

π2

)
exp(−π) (34)

for phaset ′00

tg 2a1η1t
′
00 = − 2y0(ẏ0/π)

y2
0 − (ẏ2

0/π)
(35)

For a working point lying on theβ0 = 0
quasi-stability line, there is a range of phases within
the focusing pulse with a constant oscillation ampli-
tude. This phase range lies in the neighborhood of
phaset ′00 given byEq. (35). It follows from Eq. (31)
that Y 2

mf
(1) increases at phasest ′0 lying at the edges

of the focusing pulse (t ′0 = ±0.5) up to the value:

Y 2
mf
(1) =

[
y2

0 + ẏ2
0

a2
1

]
cosh 2a1η2 + 2y0

ẏ0

a1
sinh 2a1η2

(36)

and becomes greater thanY 2
mf
(0). At phaset ′0 that cor-

responds to the optimal phase of the first kind (t ′0 = 0)
the following equation can be obtained fromEq. (31):

Y 2
mf
(1)|t ′0=0 = y2

0 exp(−2a1η2)+ ẏ2
0

a2
1

exp(2a1η2)

(37)

Comparing this equation withEq. (30), we notice
that Y 2

mf
(0) > Y 2

mf
(1) for low values ofẏ0 and the

“plateau” at the maximum amplitude vs. the injection
phase curve includes the optimal phase of the first
kind. The optimal phase of the first kind does not lie at
the “plateau” if the initial velocity exceeds the critical
velocity ẏ0 cr = 0.6531ẏ0; the “plateau” narrows but
still lies around phaset ′00 (seeEq. (35)).

If an ion is injected at a phase of the focusing pulse
then the maximum ion excursion changes witht ′0 ac-
cording toEqs. (32) and (33).

Now we compare calculations of maximum
ion excursion from the origin usingEq. (14) and

Eqs. (30)–(33)for the working points lying at the
β0 = 0 quasi-stability line (forη1 = η2).

For the optimal phase of the first kind we have:

Y 2
m Eq. (14)

Y 2
m Eq. (30)

∣∣∣∣∣
β0=0

= 1.24377 (38)

Thus, the general expression (14) yields an error
of 24.4% for the amplitude of ion excursion at the
points lying at theβ0 = 0 quasi-stability line. This
calculation was made fory0 = 1, ẏ0 = −0.5 and
Up−p = 103 V that corresponds to an injection energy
of 4.22 eV (the type of waveform is here the “meander”
with zero dc component,η1 = η2).

If the injection phase moves from the optimal phase
of the first kind towards the edge of the focusing pulse,
then the value of the ratio given byEq. (38)changes
and its value decreases to 1.078. This means that the
calculation error ofEq. (14)decreases to about 8%.

If the ion is injected at phases of the defocusing
pulse then one should useEqs. (32) and (33). For the
case where the initial phase coincides with the optimal
phase of the second kind (t ′0 = 0), Eq. (33)yields a
greater value ofY 2

m than the value calculated using
Eq. (32) and the initial conditions described above
(negative injection energy). Here we useEq. (33).

For this case, we make the following estimation:

Y 2
m Eq. (14)

Y 2
m Eq. (33)

∣∣∣∣∣
β0=0

= 1.49226 (39)

Here we obtain a greater deviation (about 50%) in
comparison with the case considered above.

In practice, to evaluate ion trap performance, so
called amplitude-phase characteristics (APC) of the
first and second kinds are used. The APC of the first
kind is the dependence of the amplitude of the os-
cillatory ion motion on the injection phase calculated
for the following initial conditions:y0 = 1, ẏ0 = 0.
The APC of the second kind is calculated fory0 = 0,
ẏ0 = 1.

The APC of the first kind, as follows fromEq. (14),
is described by the following expression:

Y 2
m|(1,0) = −ψ4,1(t)ψ1,1(t

′
0)

1 − β2
0

(40)



322 E.P. Sheretov / International Journal of Mass Spectrometry 219 (2002) 315–324

The theory developed above allows us to obtain the
APC of the first and second kinds for the case where
the working point lies on a quasi-stability line. For
this purpose, for example forβ0 = 0, we can use
Eqs. (30) and (31)if the initial phase corresponds to
the focusing pulse, andEqs. (32) and (33)if the initial
phase lies within the defocusing pulse. Thus,Eqs. (30)
and (31)for the focusing pulse yield two expressions
to describe the APC of the first kind:

Y 2
m1f

|(1,0) = [coshπ − sinhπ cosπt ′0] (41)

and

Y 2
m1f

|(1,0) = 1 (42)

We see that the oscillation amplitude calculated
from Eq. (41)for the optimal phase of the first kind
(t ′0 = 0) is less than the amplitude obtained from
Eq. (42). Thus, in the neighborhood of this phase, one
should useEq. (42)up to the critical phaset ′0 cr that
corresponds to the following condition:

coshπ − sinhπ cosπt ′0 cr = 1 (43)

or

t ′0 cr = 0.1305

For phasest ′0 > t ′0 cr lying within the focusing pulse,
the APC of the first kind is derived usingEq. (41). At
the edges of the focusing pulse we have:

Y 2
m1f
(1,0) = coshπ = 11.592

The APC of the first kind determined byEq. (40)
has the value ofY 2

m|(1,0) equal to 1 at the optimal phase
of the first kind (Eq. (42)yields the same value) and
at the edges of the focusing pulse:

Y 2
m|(1,0) = 12.07

Thus, the APC of the first kind calculated using
Eq. (14)has one minimum equal to 1. The other val-
ues of amplitudes are greater than those of amplitudes
calculated fromEqs. (41) and (42). However, the re-
markable property of the APC obtained fromEqs. (41)
and (42)is that this curve has a “plateau” about the
minimum.

The APC of the first kind for the phases within
the defocusing pulse, as follows fromEq. (14), is de-
scribed by:

Y 2
mdf

|(1,0) = exp
(π

2

)
coshπt ′0 (44)

The value ofY 2
mdf
(1,0) at the optimal phase of the

second kind (t ′0 = 0) is equal to 4.81, and at the edges
of the defocusing pulse:

Y 2
mdf

|(1,0) = exp
(π

2

)
cosh

π

2
= 12.07 (45)

Now, we obtain an expression for the APC of the
first kind within the defocusing pulse forβ0 = 0.

FromEqs. (32) and (33)we have:

Y 2
mdf
(0)|(1,0) = cosha1η1(1 − 2t ′0) and

Y 2
mdf
(1)|(1,0) = cosha1η1(1 + 2t ′0) (46)

It follows from Eq. (46) that the values of
Y 2

mdf
(0)|(1,0) andY 2

mdf
(1)|(1,0) are equal to each other

at the optimal phase of the second kind (t ′0 = 0) and
differ at the edges of the pulse (t ′0 = ±0.5). This means
that the APC of the first kind has a minimum att ′0 = 0:

Y 2
mdf

|
(1,0)
(t ′0 = 0)

= cosh
π

2
= 2.51 (47)

At the edges of the defocusing pulse (t ′0 = ±0.5):

Y 2
mdf

|
(1,0)

(t ′0 = ±0.5)

= coshπ = 11.59 (48)

Comparing Eqs. (47) and (48)with Eqs. (44)
and (45)(obtained fromEq. (14)), we see thatEq. (14)
yields a minimum value twice as large as that ob-
tained fromEq. (47); the APC of the first kind, cal-
culated usingEq. (14), exhibits greater values by 4%
at the edges of the defocusing pulse. Thus, the APC
of the first kind goes above the true curve within the
defocusing pulse.

APC of the first and second kinds are used to esti-
mate the trapping efficiency for different ion injection
techniques. If the ionizing electron beam is injected
through a narrow slit in the ring electrode then the ions
created have small initial velocities in theXY plane,
but considerable initial coordinates. In this case, the
trapping efficiency in theXY plane is determined by
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the APC of the first kind for thex(y) coordinate; the
trapping efficiency for ions along theZ axis is deter-
mined by the APC of the second kind. Alternatively,
if a narrow ionizing electron beam is injected along
theZ axis, then the trapping efficiency in theXY plane
is determined by the APC of the second kind for the
x(y) coordinate, and the APC of the first kind for the
z coordinate is important for the trapping efficiency
along theZ axis.

From Eq. (14) we obtain the APC of the second
kind in the following form:

Y 2
m|(0,1) = ψ4,1(t)ψ4,1(t0)

1 − β2
0

(49)

If β0 = 0, then for a rectangular rf waveform (me-
ander,η1 = η2 with zero dc component) we have:

Y 2
mf
(0)|(0,1) = 1

a2
1

(50)

Y 2
mf
(1)|(0,1) = 1

a2
1

(coshπ + sinhπ cosπt ′0) (51)

and

Y 2
mdf
(0)|(0,1) = 1

a2
1

cosh
π

2
(1 − 2t ′0) (52)

Y 2
mdf
(1)|(0,1) = 1

a2
1

cosh
π

2
(1 + 2t ′0) (53)

It follows from Eqs. (50) and (51)that the shape of
the APC of the second kind is determined byEq. (51)
only and there is one maximum in the middle of the
focusing pulse att ′0 = 0. The value of the maximum
is:

Y 2
mfmax

|(0,1) = 1

π2
exp(π) = 2.34 (54)

At the edges of the focusing pulse, the APC pos-
sesses the following value:

Y 2
mfmin

|(0,1) = 1

π2
coshπ = 1.174 (55)

The APC of the second kind, as follows from
Eqs. (52) and (53), has a minimum in the middle of
the defocusing pulse:

Y 2
mdfmin

|(0,1) = 1

π2
cosh

π

2
= 0.2542 (56)

and two maxima at the edges of the defocusing pulse
whose values coincide with those obtained from
Eq. (55).

Eq. (49) yields the value of 2.34 (that matches
Eq. (54)) for the APC of the second kind in the middle
of the focusing pulse, and

Y 2
mf Eq. (49)|(0,1) = 1

π2
exp

(π
2

)
cosh

π

2
= 1.223

(57)

at the edges; this value is 4% greater than that obtained
from Eq. (55).

For the defocusing pulse, we obtain fromEq. (49):

Y 2
mdf Eq. (49)|(0,1) = 1

π2
exp

(π
2

)
coshπt ′0 (58)

Here, the minimum is in the middle of the pulse,
and its value is 0.487. This is almost twice as large
as the value obtained fromEq. (50). Eq. (58)yields a
maximum value att ′0 = ±0.5 that matches the value
determined fromEq. (57), but is greater than the value
of Eq. (55).

Thus, Eq. (14) gives an inflated APC of the both
kinds within the whole periodT0.

At the end of this part, the author is ready to an-
swer a reader’s basic question: what is a real reason
for the disagreement between the amplitudes of ion
oscillations determined from different expressions?
Now we can say surely: the main reason of this dis-
agreement is that the oscillation amplitude vs. the
parameter stability curve has a spiking structure. This
means that the amplitude of ion oscillatory motion
decreases sharply if the working point on the stability
diagram approaches a quasi-stability line (parametric
resonance line). Thus, the revealed spiking structure
of the dependence between the oscillation amplitude
and the working point location is determined com-
pletely by the fine structure of the stability diagram,
about which we have reported previously[6,9,10].

In Part II of this article, we investigate the fine ef-
fects discovered in the amplitude of ion oscillations
within the QMS and we compare the values of ampli-
tudes calculated from the obtained analytical expres-
sions and by direct trajectory calculations.
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4. Conclusions

The general theory of characteristic solution method
is demonstrated and the fundamental expressions de-
termining the amplitude of ion oscillation within the
QMS are presented here. It is shown that there is
a spiking structure in the dependence between the
amplitude of ion oscillation and the working point
location on the stability diagram. This spiking struc-
ture occurs due to the fine structure of the stability
diagram the existence of which has been pointed out
in our earlier works.

References

[1] E.P. Sheretov, B.I. Kolotilin, J. Tech. Phys. XII (9) (1972)
1931.

[2] E.P. Sheretov, Terent’ev, J. Tech. Phys. XII (5) (1972) 953.

[3] E.P. Sheretov, Int. J. Mass Spectrom. 198 (2000) 83.
[4] E.P. Sheretov, B.I. Kolotilin, N.V. Veselkin, A.V. Brykov, E.V.

Fedosov, Int. J. Mass Spectrom. 198 (2000) 97.
[5] N.W. McLachlan, Theory and Applications of Mathieu

Functions, Clarendon, Oxford, 1947.
[6] E.P. Sheretov, B.I. Kolotilin, A structure of the stability

diagram for quadrupole mass spectrometers (in Russian),
Scientific Digest (Nauchnoe priborostroenie), Ryazan State
Radio Technical University, Ryazan, 1995, p. 3.

[7] E.P. Sheretov, B.I. Kolotilin, O.W. Rozhkov, Modulation
resonances in hyperboloidal mass spectrometers (in Russian),
Scientific Digest (Nauchnoe priborostroenie), Ryazan State
Radio Technical University, Ryazan, 1995, p. 8.

[8] E.P. Sheretov, B.I. Kolotilin, M.P. Safonov, Nonlinear
resonances in hyperboloidal mass spectrometry (in Russian),
Scientific Digest (Nauchnoe priborostroenie), Ryazan State
Radio Technical University, Ryazan, 1995, p. 18.

[9] E.P. Sheretov, V.S. Gurov, B.I. Kolotilin, Int. J. Mass
Spectrom. 184 (1999) 207.

[10] E.P. Sheretov, B.I. Kolotilin, A.V. Brykov, A.E.
Sheretov, in: Proceedings of the 14th International Mass
Spectrometry Conference, Tampere, Finland, August, 1997,
p. 229.


	Some properties of charged particle trajectories in quadrupole mass spectrometersPart I. General theory
	Introduction
	General theory of extreme characteristic solutions of the Hill equation
	Calculation of oscillation amplitude for ions, characteristic points of which lie on quasi-stability lines within the stability zone
	Conclusions
	References


